Biochemical characterization of extra- and intracellular endoxylanse from thermophilic bacterium Caldicellulosiruptor kronotskyensis
نویسندگان
چکیده
Caldicellulosiruptor kronotskyensis grows on lignocellulosic biomass by the catalysis of intrinsic glycoside hydrolase, and has potential application for consolidated bioprocessing. In current study, two predicted extra- (Xyn10A) and intracellular (Xyn10B) xylanase from C. kronotskyensis were comparatively characterized. Xyn10A and Xyn10B share GH10 catalytic domain with similarity of 41%, while the former contains two tandem N-terminus CBM22s. Xyn10A showed higher hydrolytic capability than Xyn10B on both beechwood xylan (BWX) and oat spelt xylan (OSX). Truncation mutation experiments revealed the importance of CBMs for hydrolytic activity, substrate binding and thermostability of Xyn10A.While the quantity of CBM was not directly related to bind and thermostability. Although CBM was considered to be crucial for substrate binding, Xyn10B and Xyn10A as well as truncations performed similar binding affinity to insoluble substrate OSX. Analysis of point mutation revealed similar key residues, Glu493, Glu601 and Trp658 for Xyn10A and Glu139, Glu247 and Trp305 for Xyn10B. Both Xyn10A and Xyn10B exhibited hydrolytic activity on the mechanical pretreated corncob. After pre-digested by Xyn10A or Xyn10B, the micropores inthe the mechanical pretreated corncob were observed, which enhanced the accessibility for cellulase. Compared with corncob hydrolyzed with cellulase alone, enhanced hydrolytic performance of was observed after pre-digestion by Xyn10A or Xyn10B.
منابع مشابه
Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus.
The genus Caldicellulosiruptor contains the most thermophilic, plant biomass-degrading bacteria isolated to date. Previously, genome sequences from three cellulolytic members of this genus were reported (C. saccharolyticus, C. bescii, and C. obsidiansis). To further explore the physiological and biochemical basis for polysaccharide degradation within this genus, five additional genomes were seq...
متن کاملBiochemical Characterization of Two Thermostable Xylanolytic Enzymes Encoded by a Gene Cluster of Caldicellulosiruptor owensensis
The xylanolytic extremely thermophilic bacterium Caldicellulosiruptor owensensis provides a promising platform for xylan utilization. In the present study, two novel xylanolytic enzymes, GH10 endo-β-1,4-xylanase (Coxyn A) and GH39 β-1,4-xylosidase (Coxyl A) encoded in one gene cluster of C.owensensis were heterogeneously expressed and biochemically characterized. The optimum temperature of the ...
متن کاملBiochemical Characterization of A Novel Thermophilic Esterase Isolated from Shewanella sp F88
The main objective of this study was to purify and characterize an esterase from Shewanella sp F88. The enzyme was purified 41-fold and an overall yield of 21 %, using a two-step procedure, including ammonium sulfate precipitation and Q-sepharore chromatography. Molecular weight of the enzyme was 62.3 kDa according to SDS-PAGE data. The enzyme showed an optimum activity at pH 6.5 and 58 ˚C. Evo...
متن کاملSingle-step ethanol production from lignocellulose using novel extremely thermophilic bacteria
BACKGROUND Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermo...
متن کاملIsolation and Partial Characterization of a Bacterial Thermostable Polymethyl Galacturonase from a Newly Isolated Bacillus sp. strain BR1390
Background: Pectinases are pectin degrading class of enzymes including polygalacturonase (PG), polymethyl galacturonase (PMG), pectate lyase (PEL), and pectin esterase (PE) that are commonly used in processes involving the degradation of plant materials, such as speeding up the extraction of fruit juices. Objectives: A highly methylated pectin degrading bacterium from soil covered with fruit wa...
متن کامل